DECLARATORIA de vigencia de la Norma Mexicana NMX-R-12901-1-SCFI-2015

DECLARATORIA de vigencia de la Norma Mexicana NMX-R-12901-1-SCFI-2015.

Al margen un sello con el Escudo Nacional, que dice: Estados Unidos Mexicanos.- Secretaría de Economía.- Subsecretaría de Competitividad y Normatividad.- Dirección General de Normas.

DECLARATORIA DE VIGENCIA DE LA NORMA MEXICANA NMX-R-12901-1-SCFI-2015, NANOTECNOLOGAS-GESTIN DE RIESGO OCUPACIONAL APLICADO A NANOMATERIALES MANUFACTURADOS. PARTE 1: PRINCIPIOS Y ENFOQUES.
La Secretaría de Economía, por conducto de la Dirección General de Normas, con fundamento en lo dispuesto por los artículos 34, fracciones II, XIII y XXXIII de la Ley Orgánica de la Administración Pública Federal; 3, fracción X, 51-A, 51-B y 54 de la Ley Federal sobre Metrología y Normalización; 45 y 46 de su Reglamento; 21, fracciones I, IX, XI y XXI del Reglamento Interior de esta Secretaría y habiéndose satisfecho el procedimiento previsto por la Ley de la materia para estos efectos, expide la declaratoria de vigencia de la norma mexicana que se enuncia a continuación, misma que ha sido elaborada y aprobada como Proyecto de Norma Mexicana por el Comité Técnico de Normalización Nacional en Nanotecnologías, lo que se hace del conocimiento de la industria, distribuidores, consumidores y del público en general. El texto completo de la norma que se indica puede ser adquirido gratuitamente en la biblioteca de la Dirección General de Normas de esta Secretaría, ubicada en Puente de Tecamachalco número 6, colonia Lomas de Tecamachalco, Sección Fuentes, Naucalpan de Juárez, código postal 53950, Estado de México o en el catálogo electrónico de la Dirección General de Normas cuya dirección electrónica es http://www.economia-nmx.gob.mx/normasmx/index.nmx.
La presente Norma Mexicana NMX-R-12901-1-SCFI-2015 entrará en vigor 60 días naturales contados a partir del día natural inmediato siguiente de la publicación de esta declaratoria de vigencia en el Diario Oficial de la Federación. SINEC-20160808162040605.
CLAVE O CDIGO
TTULO DE LA NORMA MEXICANA
NMX-R-12901-1-SCFI-2015
Nanotecnologías-Gestión de riesgo ocupacional aplicado a nanomateriales manufacturados. Parte 1: Principios y enfoques.
Objetivo y campo de aplicación
Esta Norma Mexicana NMX-R-12901-1-SCFI-2015 ofrece orientación sobre las medidas de seguridad relativas a los nanomateriales manufacturados, incluyendo el uso de controles de ingeniería y equipo de protección personal, la orientación sobre el control de derrames y escapes accidentales, y orientación sobre el manejo apropiado de estos materiales en su eliminación.
Esta Norma Mexicana NMX-R-12901-1-SCFI-2015 asume su uso por personal competente, como los responsables de seguridad y de salud, directores de producción, responsables de medio ambiente, higienistas ocupacionales/industriales y otros responsables de la operación segura de las instalaciones dedicadas a la producción, manipulación, transformación y eliminación de los nanomateriales manufacturados.
Esta Norma Mexicana NMX-R-12901-1-SCFI-2015 aplica a materiales manufacturados que consisten en nano-objetos tales como nanopartículas, nanofibras, nanotubos y nanoalambres, así como a los agregados y aglomerados de estos materiales incluyendo aquéllos de tamaño que excede la nanoescala (NOAA).
El término "NOAA", en esta Norma Mexicana NMX-R-12901-1-SCFI-2015, aplica a dichos componentes en su forma original o incorporados en materiales o preparaciones desde los cuales pudieran liberarse durante alguna fase de su ciclo de vida, incluyendo, como resultado, las actividades al final de ese ciclo como su eliminación.
 
Concordancia con normas internacionales
⏠ Esta Norma Mexicana no es equivalente (NEQ) con ninguna Norma Internacional por no existir Norma Internacional sobre el tema tratado.
Bibliografía
⏠ ISO/TR 13121, Nanomaterials Risk Evaluation.
⏠ ISO/DTS 12901-2 Nanotechnologies-Occupational risk management applied to engineered nanomaterials - Part 1: Principles and approaches.
⏠ ISO/TR 12885: 2008, Health and safety in occupational settings relevant to Nanotechnologies.
⏠ ISO/TR 13329, Nanomaterials-Preparation of Material Safety Data Sheet (MSDS)4)
⏠ ISO/TS 27687: 2008, Nanotechnologies-Terminology and definitions for nano-objects Nanoparticle, nanofibre and nanoplate
⏠ ISO 80004-1: 2010, Nanotechnologies-Vocabulary-Part 1: Core terms
⏠ ISO 14698-2: 2003, Cleanrooms and associated controlled environments-Biocontamination control-Part 2: Evaluation and interpretation of biocontamination data
⏠ ISO 10993-17: 2002, Biological evaluation of medical devices-Part 17: Establishment of allowable limits for leachable substances
⏠ ISO/IEC Guide 51: 1999, Safety aspects-Guidelines for their inclusion in standards
⏠ ICS 13.340, Protective Equipment
⏠ EN 14907: 2006, Ambient air quality-Standard gravimetric measurement method for the determination of the PM2,5 mass fraction of suspended particulate matter.
⏠ OECD. 2009. No 11: Emmision Assessment for Identification of Sources and Release of Airborne Manufactured Nanomaterials in the Workplace: Compilation of Existing Guidance, ENV/JM/MONO, 2009, 16.
 
⏠ PAS 136: 2007. Terminology for nanomaterials. British Standards Institution.
⏠ PAS 6699-2: 2007, Guide to Safe Handling and Disposal of Manufactured Nanomaterials, British Standards Institution.
⏠ Kroto H. W., Heath J. R., O'Brian S. C., Curl R. F., Smalley R. E. C60: Buckminsterfullerene. Nature, 1985, 318 pp. 162-163.
⏠ Iijima S. Helical Microtubules of Graphitic Carbon. Nature, 1991, 354 pp. 56-58.
⏠ Occupational Exposure to Titanium Dioxide, Current Intelligence Bulletin N.I.O.S.H.63 2011. www.cdc.gov/niosh/docs/2011-160/
⏠ Pope C.A., Burnett R.T., Thurston G.D. et al. Cardiovascular mortality and long-term exposure to particulate air pollution: epidemiological evidence of general pathophysiological pathways of disease. Circulation, 2004, 109 pp. 71-74.
⏠ Donaldson K., Murphy F.A., Duffin R., Poland C. Asbestos, carbon nanotubes, and the pleural mesothelium: A review of the hypothesis regarding the role of long fibre retention in the parietal pleura inflammation and mesothelioma. Part. Fibre Toxicol. 2010, 7 pp. 1-17.
⏠ The SAFENANO website: www.safenano.org
⏠ Tinkle S.S., Antonini J.M., Rich B.A., Roberts J.R., Salmen R., DePree K. et al. Skin as a routeof exposure and sensitization in chronic beryllium disease. Environ. Health Perspect. 2003 Jul, 111 (9) pp. 1202-1208.
⏠ Ryman-Rasmussen J .P., Riviere J .E., Monteiro-Riviere N.A. Penetration of intact skin by quantum dots with diverse physicochemical properties. Toxicol. Sci. 2006 May, 91 (1) pp. 159-165 Epub 2006 Jan 27.
⏠ Gulson B. et al. Small amounts of zinc from zinc oxide particles in sunscreens applied outdoors are absorbed through human skin. Toxicol. Sci. 2010, 118 (1) pp. 140-149.
⏠ The control of hazardous substances regulations (COSHH) 2002 (as amended). SI 2002, No. 2677. London: HMSO.
⏠ Fire and explosion properties of nanopowders, RR782 Health and Safety Executive 2010.
⏠ Engineered Nanoparticles-Review of Health and Environmental Safety (ENHRES) Final report, available at: http://ihcp.jrc.ec.europa.eu/whats-new/enhres-final-report.
⏠ NIOSH Nanotechnology web page: www.cdc.gov/niosh/topics/nanotech/default.html
⏠ Australia S.A.F.E.W.O.R.K.(SWA). 2010, An Evaluation of MSDS and Labels Associated with the use of Engineered Nanomaterials, Commonwealth of Australia. www.safeworkaustralia.gov.au/NR/rdonlyres/9E6C8E6F-AB31-4A0A BCD8D31742F25F79/0/AnEvaluationofMSDSandLabelsassociatedwiththeuseofengineerednanomaterials_June_2010.pdf
⏠ Solids Handling and Processing Association (SHAPA). Acceso en el sitio web www.shapa.co.uk/dust-collection-control.php
⏠ Balazy A., Toivola M., Reponen T., Podgorski A. et al. Based performance evaluation of N95 filtering-facepiece respirators challenged with nanoparticles. Ann. Occup. Hyg. 2006, 50 (3) pp. 259-269
⏠ Rengasamy S., K ing W.P., Eimer B.C., Shaffer R.E. Filtration performance of NIOSH-Approved N95 and P100 filtering facepiece respirators against 4 to 30 nanometer-size nanoparticles. J. Occup. Environ. Hyg. 2008, 5 (9) pp. 556-564.
⏠ Health and Safety Executive. OC 282/28: Fit testing of respiratory protective equipment. 2003 http://www.hse.gov.uk/foi/internalops/ocs/200-299/282_28.pdf
 
⏠ Golanski L., Guiot A., Rouillon F., Pocachard J., Tardif F. Experimental evaluation of personal protection devices against graphite nanoaerosols: Fibrous filter media, masks, protective clothing, and gloves. Hum. Exp. Toxicol. 2009, 28 pp. 353-359.
⏠ Shaffer R. and Rengasamy S. Respiratory Protection Against Airborne Nanoparticles: A Review. J. Nanopart. Res. 2009, 11 pp. 1661-1672.
⏠ NANOSAFE dissemination report. Are conventional protective devices such as fibrous filter media, respirator cartridges, protective clothing and gloves also efficient for nanoaerosols? Available at: www.nanosafe.org/scripts/home/publigen/content/templates/show.asp?P=63&L=EN&ITEMID=13.
⏠ Department of Energy Nanoscale Science Research Centres. Nanoscale science research center: Approach to Nanomaterial ES&H. Revision 2-June 2007
⏠ Packham C. Gloves as chemical protection - Can they really work? Ann. Occup. Hyg. 2006, 50 (6) pp. 545-548.
⏠ Health and Safety Executive. Risk Management of Carbon Nanotubes, 2006.
⏠ NIOSH. Approaches to Safe Nanotechnology, Managing Health and Safety Concerns with Engineered Nanoparticles. 2009.
⏠ Paik S.Y., Zalk D.M., Swuste P. Application of a pilot control banding tool for risk level Assessment and control of nanoparticle exposure. Ann. Occup. Hyg. 2008, 52 (6) pp. 419-428.
⏠ US EPA US Code of Federal Regulations Title 40, Part 50 Appendix L, Reference method for the determination of fine particulate matter as PM2.5 in the atmosphere. 1998.
⏠ Brouwer D.H., Gijsbers J.H., Lurvink M.W. Personal Exposure to Ultrafine Particles in the Workplace: Exploring Sampling Techniques and Strategies. Ann. Occup. Hyg. 2004, 48 (5) pp. 439-453.
⏠ Methner M., Hodson L., Geraci C. Nanoparticle emission assessment technique (NEAT) for the identification and measurement of potential inhalation expsoure to engineered nanomaterails-Part A. J. Occup. Environ. Hyg. 2010, 7 (3) pp. 127-132.
⏠ Brouwer D., van Duuren-Stuurman B., Berges M., Jankowska E., Bard D., Mark D. From workplace air measurement results toward estimates of exposure? Development of a strategy to assess exposure to manufactured nano-objects. J. Nanopart. Res. 2009, 11 pp. 1867-1881.
⏠ Maynard A. D. and Aitken R.J. Assessing exposure to airborne nanomaterials: Current abilities and future requirements. Nanotoxicology. 2 007, 1 (1) pp. 26-41. Available at: www.informahealthcare.com/doi/abs/10.1080/17435390701314720 and www.informahealthcare.com/doi/abs/10.1080/17435390701314720
⏠ Rasmussen P.E., Gardner H.D., Niu J. Buoyancy-corrected Gravimetric Analysis of Lightly Loaded Filters. J. Air Waste Manag. Assoc. 2010, 60 (9) pp. 1065-1077.
⏠ Rasmussen P.E., Wheeler A., Hassan N., Filiatreault A., Lanouette M. Monitoring personal, indoor, and outdoor exposures to metals in airborne particulate matter: risk of contamination during sampling, handling and analysis. Atmos. Environ. 2007, 41 pp. 5897-5907.
⏠ NIOSH. Current Intelligence Bulletin 60: Interim Guidance for Medical Screening and Hazard Surveillance for Workers Potentially Exposed to Engineered Nanoparticles. Available at, 2009www.cdc.gov/niosh/docs/2009-116/.
⏠ Department of Energy Nanoscale Science Research Centres. Nanoscale science research center: Approach to Nanomaterial ES&H. Revision 2-June 2007
 
⏠ UK Environment Agency. âWhat is a Hazardous Waste?' A guide to the Hazardous Waste Regulations and the List of Waste Regulations in England and Wales (HWR01). Bristol: 2005.
⏠ Environment Agency. Interim Advice on Wastes containing unbound Carbon Nanotubes. 19 May 2008.
⏠ Health and Safety Executive. HSG 103: Safe Handling of combustible dusts: Precautions Against explosions. 2003.
⏠ Han J.H. et al. Monitoring multiwalled carbon nanotube exposure in carbon nanotube research facility. Inhal. Toxicol. 2 008, 20 (8) pp. 741-749. Available at: http://www.ncbi.nlm.nih.gov pubmed/18569096
⏠ Mhlmann C., Welter J., Klenke M., Sander J. Workplace exposure at nanomaterial production processes. Nanosafe 2008. International conference on safe production and use of nanomaterials. J. Phys.: Conf. Ser. 2009, 170 p. 012004.
⏠ Methner M.M. Engineering case reports. Effectiveness of local exhaust ventilation (LEV) in controlling engineered nanomaterial emissions during reactor cleanout operations. J. Occup. Environ. Hyg. 2 008, 5 (6) pp. D63-D69 . Available at: http://www.ncbi.nlm.nih. gov/pubmed/18432476.
⏠ Demou E., Peter P., Hellweg S. Exposure to manufactured nanostructured particles in an industrial pilot plant. Ann. Occup. Hyg. 2008, 52 (8) pp. 695-706. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18931382.
⏠ Demou E., Stark W.J., Hellweg S. Particle emission and exposure during nanoparticle synthesis in research laboratories. Ann. Occup. Hyg. 2009, 53 (8) pp. 829-838. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19703918.
⏠ Tsai S.-J.C., Huang R.F., Ellenbecker M.J. Airborne nanoparticle exposures while using constantflow, constant-velocity, and air-curtain-isolated fume hoods. Ann. Occup. Hyg. 2 010, 54 (1) pp. 78-87. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19933309.
⏠ Science and Decisions: Advancing Risk Assessment. Committee on Improving Risk Analysis Approaches Used by the U.S. EPA. Board on Environmental Studies and Toxicology, Division on Earth and Life Studies, National Research Council of the National Academies. Washington, D.C.: The National Academies Press, 2009.
⏠ Nel A. E., Xia T., Madler L., Li N. Toxic potential of materials at the nanolevel. Science. 2006, 311 (5761) pp. 622-627.
⏠ Dankovic D., Kuempel E., Wheeler M. An approach to risk assessment for TiO2. Inhal. Toxicol. 2007, 19 (1) pp. 205-212.
⏠ Kuempel E.D., Tran C.L., Castranova V., Bailer A.J. Lung dosimetry and risk assessment of nanoparticles: Evaluating and extending current models in rats and humans. Inhal. Toxicol. 2006, 18 pp. 717-724
⏠ Tran C.L., Cullen R.T., Buchanan D., Jones A.D., Miller B.G., Searl A. et al. Investigation and prediction of pulmonary responses to dust'. Part II. In: Investigations into the pulmonary effects of low toxicity dusts. Parts I and II. Suffolk, UK: Health and Safety Executive, Contract Research Report 216/1999, 1999.
⏠ Cullen R.T., Jones A .D., Miller B.G., Tran C.L., Davis J.M.G., Donaldson K. e t al.Toxicity of volcanic ash from Montserrat. Edinburgh, UK: Institute of Occupational Medicine. IOM Research Report TM/02/01, 2002.
⏠ Lee K. P., Trochimowicz H.J., Reinhardt C.F. Pulmonary response of rats exposed to titanium dioxide (TiO2) by inhalation for two years. Toxicol. Appl. Pharmacol. 1985, 79 pp. 179-192.
.
 
⏠ Heinrich U., Fuhst R., Rittinghausen S., Creutzenberg O., Bellmann B., Koch W., Levsen K. Chronic inhalation exposure of wistar rats and 2 different strains of mice to diesel-engine exhaust, carbon-black, and titanium-dioxide', Inhal. Toxicol. 7 (4), 199, pp. 533-466.
⏠ Shvedova A. A., Kisin E.R., Mercer R., Murray A.R., Johnson V.J., Potapovich A.I. et al. Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 2005, 289 (5) pp. L698-L708.
⏠ The Japan Society for Occupational Health. Recommendation of Occupational Exposure Limits (2007-2008). J. Occup. Health. 2007, 49 pp. 328-344.
⏠ Kaluza S. et al. Workplace exposure to nanoparticles. European Agency for Safety and Health at Work, Spain, 2009.
⏠ Greim H. Gesundheitsschdliche Arbeitsstoffe: Amorphe Kieselsuren, Toxikologischarbeitsmedizinische Begrndung von MAK-Werten. Wiley-VCH, 1989.
⏠ Ausschuss fr Gefahrstoffe, Technische Regeln fr Gefahrstoffe 900 (TRGS 900): Arbeitsplatzgrenzwerte, accessed on June 26, 2009. www.baua.de/de/Themen-von-A-Z/Gefahrstoffe/TRGS/TRGS-900.html
⏠ NIOSH. Occupational Exposure to Carbon Nanotubes and Nanofibers, 2010. Available at: www.cdc.gov/niosh/docket/review/docket161A/pdfs/carbonNanotubeCIB PublicReviewOfDraft.pdf.
⏠ Kuempel E.D., Geraci C.L., Schulte P.A. Risk assessment approaches and research needs for nanoparticles: An examination of data and information from current studies. In: Nanotechnology- Toxicological Issues and Environmental Safety, (Simeonova P.P., Opopol N., Luster M. I. eds.). Springer-Verlag, New York, 2007, pp. 119-45.
⏠ Hansen S.F., Larsen B.H., Olsen S.L. et al. Categorization framework to aid hazard identification of nanomaterials. Nanotoxicology. 2007, 1 pp. 243-250
⏠ Naumann B.D., Sargent E.V., Starkman B.S., Fraser W.J., Becker G.T., Kirk G.D. Performance based exposure control limits for pharmaceutically active ingredients. Am. Ind. Hyg. Assoc. J. 1996, 57 pp. 33-42
⏠ Schulte P. A., & Murashov V. Zumwalde, R. Kuempel, E. D. Geraci, C. L. Occupational exposure limits for nanomaterials: state-of-the-art. J. Nanopart. Res. 2010, 12 pp. 1971-1987
⏠ Institut fuer Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung (IFA) www.dguv.de/ifa/en/fac/nanopartikelbeurteilungsmassstaebe/index.jsp
⏠ List of Manufactured Nanomaterials and List of Endpoints for phase one of the OECD testing programme. The website is: www.olis.oecd.org/olis/2008doc.nsf/LinkTo/ NT000034C6/$FILE/JT03248749.PDF, OECD (2008)
⏠ Maynard A.D., Baron P.A., Foley M., Shedova A.A., Kisin E.R., Castranova V. Exposure to carbon nanotube material: Aerosol release during the handling of unrefined single-wall carbon nanotube material. J. Toxicol. Environ. Health A. 2004, 67 pp. 87- 107.
⏠ Kuhlbusch T.A., Asbach C., Fissan H., Ghler D., Stintz M. Nanoparticle exposure at nanotechnology workplaces: A review. Part. Fibre Toxicol. 2011, 8 p. 22
 
Atentamente
Ciudad de México, a 8 de agosto de 2016.- El Director General de Normas y Secretariado Técnico de la Comisión Nacional de Normalización, Alberto Ulises Esteban Marina.- Rúbrica.