alerta Si el documento se presenta incompleto en el margen derecho, es que contiene tablas que rebasan el ancho predeterminado. Si es el caso, haga click aquí para visualizarlo correctamente.
 
DOF: 03/06/2020
DECLARATORIA de vigencia de la Norma Mexicana NMX-R-16197-SCFI-2019

DECLARATORIA de vigencia de la Norma Mexicana NMX-R-16197-SCFI-2019.

Al margen un sello con el Escudo Nacional, que dice: Estados Unidos Mexicanos.- ECONOMÍA.- Secretaría de Economía.- Dirección General de Normas.

DECLARATORIA DE VIGENCIA DE LA NORMA MEXICANA NMX-R-16197-SCFI-2019, COMPILACIÓN Y DESCRIPCIÓN DE MÉTODOS DE DETECCIÓN TOXICOLÓGICA PARA NANOMATERIALES MANUFACTURADOS.
La Secretaría de Economía, por conducto de la Dirección General de Normas, con fundamento en lo dispuesto por los artículos 34, fracciones II, XIII y XXXIII de la Ley Orgánica de la Administración Pública Federal; 3, fracción X, 51-A, 51-B y 54 de la Ley Federal sobre Metrología y Normalización; 45 y 46 del Reglamento de la Ley Federal sobre Metrología y Normalización; y, 36, fracciones I, IX y XII del Reglamento Interior de la Secretaría de Economía, publica la Declaratoria de Vigencia de la Norma Mexicana que se enuncia a continuación, misma que ha sido elaborada y aprobada por el Comité Técnico de Normalización Nacional de Nanotecnologías.
El texto completo de la Norma Mexicana que se indica puede ser adquirido en el Centro Nacional de Metrología (CENAM) ubicado en Kilómetro 4.5 carretera a los Cues, Código Postal 76246, municipio El Marqués, Querétaro, teléfono (442) 211 0500 y/o al correo electrónico: rlazos@cenam.mx, o consultarlo gratuitamente en la Dirección General de Normas de la Secretaría de Economía, ubicada en Pachuca número 189, Colonia Condesa, Código Postal 06140, Demarcación Territorial Cuauhtémoc, Ciudad de México.
La presente Norma Mexicana entrará en vigor a los 60 días naturales contados a partir del día natural inmediato siguiente al día de la publicación de su declaratoria de vigencia en el Diario Oficial de la Federación. SINEC-20200219142059955.
CLAVE O CÓDIGO
TÍTULO DE LA NORMA MEXICANA
NMX-R-16197-SCFI-2019
COMPILACIÓN Y DESCRIPCIÓN DE MÉTODOS DE DETECCIÓN TOXICOLÓGICA PARA NANOMATERIALES MANUFACTURADOS.
Objetivo y campo de aplicación
Esta Norma Mexicana ofrece una recopilación y descripción de métodos in vitro e in vivo que pueden ser útiles para el examen toxicológico, incluida la detección ecotoxicológica de los nanomateriales manufacturados. Las pruebas de detección toxicológica incluidas en este Proyecto de Norma Mexicana se pueden utilizar para fines tales como la toma de decisiones iniciales en la investigación y el desarrollo de productos, retroalimentación rápida sobre posibles problemas toxicológicos o de seguridad, o para la evaluación preliminar de nanomateriales manufacturados. Este Proyecto de Norma Mexicana se divide entre ensayos de detección relacionados con humanos y ensayos de detección relacionados con el medio ambiente. Una prueba de detección es una prueba relativamente simple y económica que puede administrarse fácilmente y proporciona una indicación de los posibles efectos adversos y efectos sobre la salud humana o el medio ambiente.
Esta Norma Mexicana pretende complementar otros esfuerzos internacionales que abordan la toxicología de los nanomateriales centrándose en los métodos de detección adecuados para la evaluación preliminar y no pretende duplicar esfuerzos similares en otras organizaciones internacionales como la Organización para la Cooperación y el Desarrollo Económico (OCDE). Si la prueba de detección proporciona una indicación temprana de peligro, la guía se referirá a los enfoques de otras organizaciones para la evaluación toxicológica a gran escala o estudios escalonados adicionales.
Concordancia con Normas Internacionales
Esta Norma Mexicana es idéntica (IDT) al Reporte Técnico ISO/TR 16197:2014 Nanotechnologies-Compilation and description of toxicological screening methods for manufactured nanomaterials.
Bibliografía
·[Aggarwal, 2009] Aggarwal P., Hall J.B., McLeland C.B., Dobrovolskaia M.A., McNeil S.E. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv. Drug Deliv. Rev. 2009, 61 pp. 428-437.
·[AFSA, 2018] Guidance on risk assessment of the application of nanoscience and nanotechnologies in the food and feed, disponible en https://www.efsa.europa.eu/en/efsajournal/pub/5327 La versión 2011 está disponible en http://www.efsa.europa. eu/en/efsajournal /pub/2140.htm.
·[Aisaka, 2008] Aisaka Y., K awaguchi R., Watanabe S. Hemolysis caused by titanium dioxide particles. Inhal. Toxicol. 2008, 20 pp. 891-893
·[Alfaro-Moreno, 2008] Alfaro-Moreno E., Nawrot T.S., Vanaudenaerde B.M., Hoylaerts M.F., Vanoirbeek J.A., Nemery B. et al. Co-cultures of multiple cell types mimic pulmonary cell communication in response to urban PM10. Eur. Respir. J. 2008, 32 pp. 1184-1194
·[Andreasen, 2002] Andreasen E.A., Tanguay R.L., Peterson R.E., Heideman W. Identification of a critical amino acid in the aryl hydrocarbon receptor. J. Biol. Chem. 2002, 277 pp. 13210-13218
·[ASTM E2172-01] ASTM E2172-01, Standard Guide for Conducting Laboratory Soil Toxicity Tests with the Nematode Caenorhabditis elegans
·[Ayres, 2008] Ayres J.G., Borm P., Cassee F.R., Castranova V., Donaldson K., Ghio A. et al. Evaluating the toxicity of airborne particulate matter and nanoparticles by measuring oxidative stress potential-A workshop report and consensus statement. InhToxicol. 2008, 20 pp. 75-99
·[Baroli, 2007] Baroli B., E nnas M., L offredo F., I sola M., P inna R., L opez-Quintela M.A. Penetration of metallic nanoparticles inhuman Full thickness skin. J. Invest. Dermatol. 2007, 127 pp. 1701-1712
·[Bouldin, 2008] Bouldin J.L., Ingle T.M., Sengupta A., Alexander R., Hannigan R.E., Buchanan R.A. Aqueous toxicity and food chain transfer of quantum Dots (TM) in freshwater algae and Ceriodaphniadubia. Environ. Toxicol. Chem. 2008, 27 pp. 1958-1963
·[Burello, 2011] Burello E., & Worth A.P. A theoretical framework for predicting the oxidative stress potential of oxide nanoparticles. Nanotoxicology. 2011, 5 pp. 228-235
·[Butz, 2007] Butz T., Reinert T., Pinheiro T., Moretto P., Pallon J., Kiss A.Z. et al. NANODERM: Quality of skin as barrier to ultra-fine particles QLK4-CT-2002-02678. 2007. http://www.unileipzig.de/nanoderm/Downloads/Nanoderm_Final_Report.pdf
·[Carlson, 2008] Carlson C., Hussain S.M., Schrand A.M., Braydisch-Stolle L.K., Hess K.L., Jones R.L. et al. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J. Phys. Chem. B. 2008, 112 pp. 13608-13619
·[Chang, 2004] Chang C.C., Hwang J.S., Chan C.C., Wang P.Y., Hu T.H., Cheng T.S. Effects of concentrated ambient particle on heart rate, blood pressure, and cardiac contractility in spontaneously hypertensive rats. Inhal. Toxicol. 2004, 16 pp. 421-429
·[Chen, 2001] Chen F., Castranova V., Shi X.L., Demers L.M. New insights into the role of nuclear factor-kappa B, a ubiquitous transcription factor in the initiation of diseases. Clin. Chem. 2001, 45 pp. 7-17
·[Clift, 2011] Clift M.J., Foster E.J., Vanhecke D., Studer D., Wick P., Gehr P. et al. Investigating the interaction of cellulose nanofibers derived from cotton with a sophisticated 3D human lung cell coculture. Biomacromolecules. 2011, 10 pp. 3666-3673
·[De Jong, 2007] De Jong W.H., & Van Loveren H. eds. Animal models in immunotoxicology. M ethods, Vol. 41, January 2007
·[Dix, 2007] Dix D.J., Houck K.A., Martin M.T., Richard A.M., Setzer R.W., Kavlock R.J. The ToxCast program for prioritizing toxicity testing of environmental chemicals. Toxicol. Sci. 2007, 95 pp. 5-12
·[Diabate, 2008] Diabate S., Mueulhopt S., Paur H.R., Krug H.F. The response of a co-culture lung model to fine and ultrafine particles of incinerator fly ash at the air-liquid interface. Altern. Lab. Anim. 2008, 36 pp. 285-298
·[Doak, 2011] Doak S.H., Manshian B., J enkins G.J., S ingh N. In vitro genotoxicity testing strategy for nanomaterials and the adaptation of current OECD guidelines. Mutat. Res. 2011, 745 pp. 104-111
·[Dobrovolskaia, 2008] Dobrovolskaia M. A., Aggarwal P., Hall J.B., McNeil S.E. Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. Mol. Pharm. 2008, 5 pp. 487-495
·[Dobrovolskaia, 2009] Dobrovolskaia M.A., Patri A.K., Zheng J., Clogston J.D., Ayub N., Aggarwal P. et al. Interaction of colloidal gold nanoparticles with human blood: effects on particle size and analysis of plasma protein binding profiles. Nanomedicine. 2009, 5 pp. 106-117
·[Endo, 2005] Endo M., Koyama S., Matsuda Y., Hayashi T., Kim Y.A. Thrombogenicity and blood coagulation of a microcatheter prepared from carbon nanotube-nylon-based composite. Nano Lett. 2005, 5 pp. 101-105
·[Epa, 2012] Epa V.C., B urden F.R., T assa C., W eissleder R., S haw S., W inkler D.A. Modeling Biological Activities of Nanoparticles. Nano Lett. 2012, 12 pp. 5808-5812
·[Fabian, 2007] Fabian E., Landsiedel R., Ma-Hock L., Wiench K., Wohlleben W., van Ravenzwaay B. Tissue distribution and toxicity of intravenously administered titanium dioxide nanoparticles in rats. Arch. Toxicol. 2007, 82 pp. 151-157
·[Feliu, 2010] Feliu N., & Fadeel B. Nanotoxicology: no small matter. Nanoscale. 2010, 2 pp. 2514-2520
·[Ferin, 1992] Ferin J. & Oberdorster G. Translocation of particles from pulmonary alveoli into the interstitium. Journal of Aerosol Medicine-Deposition Clearance and Effects in the Lung, 5, 1992, pp. 179-187
·[Fingerman, 2009] Fingerman I.M., McDaniel L., Zhang X.A., Ratzat W., Hassan T., Jiang Z.F. et al. NCBI Epigenomics: A new public resource for exploring epigenomics data sets. Nucleic Acids Res. 2011, 39 pp. D908-D912
·Fourches, 2010] Fourches D., P u D., Tassa C., Weissleder R., Shaw S.Y., Mumper R.J. et al. Quantitative nanostructure-activity relationship modeling. ACS Nano. 2010, 4 pp. 5703-5712
·[Fourches, 2011] Fourches D., P u D., T ropsha A. Exploring Quantitative Nanostructure-Activity Relationships (QNAR) Modeling as a Tool for Predicting Biological Effects of Manufactured Nanoparticles. Comb. Chem. High Throughput Screen. 2011, 14 pp. 217-225
·[Fubini, 2010] Fubini B., Ghiazza M., F enoglio I. Physico-chemical features of engineered nanoparticles relevant to their toxicity. Nanotoxicology. 2010, 4 pp. 347-363
·[Geiser, 2005] Geiser M., Rothen-Rutishauser B., Kapp N., Schürch S., Kreyling W., Schulz H. et al. Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ. Health Perspect. 2005, 113 pp. 1555-1560
·[Ghafari, 2008] Ghafari P., S t-Denis C.H., Power M.E., Jin X., Tsou V., Mandal H.S. et al. Impact of carbon nanotubes on the ingestion and digestion of bacteria by ciliated protozoa. Nat. Nanotechnol. 2008, 3 pp. 347-351
·[Gottwald, 2007] Gottwald E., Giselbrecht S., Augspurger C., Lahni B., Dambrowsky N., Truckenmuller R. et al. A chip-based platform for the in vitro generation of tissues in three-dimensional organization. Lab Chip. 2007, 7 pp. 777-785
·[Gilmour, 2004] Gilmour P.S., Ziesenis A., Morrison E.R., Vickers M.A., Drost E.M., Ford I. et al. Pulmonary and systemic effects of short-term inhalation exposure to ultrafine carbon black particles. Toxicol. Appl. Pharmacol. 2004, 195 pp. 35-44
·[Grum-Tokars, 2007] Grum-Tokars V., Ratia K., Begaye A., Baker S.C., Mesecar A.D. Evaluating the 3C-like protease activity of SARS-Coronavirus: Recommendations for standardized assays for drug discovery. Virus. 2007, 133 pp. 63-73
·[Han, 2012] Han X., Corson N., Wade-Mercer P., Gelein R., Jiang J., Sahu M. et al. Assessing the relevance of in vitro studies in nanotoxicology by examining correlations between in vitro and in vivo data. Toxicology. 2012, 16 pp. 1-9
·[Handy, 2012] Handy R.D., van den Brink N., Chappel M., Mühling M., Behra R., Dusinska M. et al. Practical considerations for conducting ecotoxicity test methods with manufactured nanomaterials: what have we learnt so far? Ecotoxicology. 2012, 21 pp. 933-972
·[Handy, 2012 b] Handy R.D., Cornelis G., Fernandes T., Tsyusko O., Decho A., Sabo-Atwood T. et al. Ecotoxicity test methods for engineered nanomaterials: practical experiences and recommendations from the bench. Environ. Toxicol. Chem. 2012, 31 pp. 15-31
·[Haendel, 2004] Haendel M.A., Tilton F., Bailey G.S., Tanguay R.L. Developmental toxicity of the dithiocarbamate pesticide sodium metam in zebrafish. Toxicol. Sci. 2004, 81 pp. 390-400
·[Harper, 2008] Harper S.L., Dahl J.L., Maddux B.L.S., Tanguay R.L., Hutchison J.E. Proactively designing nanomaterials to enhance performance and minimize hazard. International Journal of Nanotechnology. 2008, 5 pp. 124-142
·[Harper, 2008 b] Harper S.L., Usenko C., Hutchinson J.E., Maddux B.L.S., Tanguay R.L. In vivo biodistribution and toxicity depends on nanomaterial composition, size, surface functionalization and route of exposure. Journal of Experimental Nanoscience. 2008, 3 pp. 195-206
·[Helfenstein, 2008] Helfenstein M., Miragoli M., Rohr S., Mueller L., Wick P., Mohr M. et al. Effects of combustion derived ultrafine particles, manufactured nanoparticles on heart cells in vitro. Toxicology. 2008, 253 pp. 70-78
·[Henry, 2007] Henry T.B., Menn F.M., Fleming J.T., Wilgus J., Compton R.N., Sayler G.S. Attributing effects of aqueous C60 nano-aggregates to tetrahydrofuran decomposition products in larval zebrafish by assessment of gene expression. Environ. Health Perspect. 2007, 115 pp. 1059-1065
·[Hirano, 2010] Hirano A., Uda K., Maeda Y. kasaka, T., Shiraki, K. One-Dimensional Protein-Based Nanoparticles Induce Lipid Bilayer Disruption: Carbon Nanotube Conjugates and Amyloid Fibrils. Langmuir. 2010, 26 pp. 17256-17259
·[Hirsch, 2011] Hirsch C., Roessleinm M., Krug H.F., Wick P. Nanomaterial cell interactions: are current in vitro tests reliable? Nanomedicine (Lond). 2011, 6 pp. 837-847
·[Holbrook, 2010] Holbrook R.D., Kline C.N., F illiben J.J. Impact of source water quality on multiwall carbon nanotube coagulation. Environ. Sci. Technol. 2010, 44 pp. 1386-1391
·[Huang, 2013] Huang S., Wiszniewski L., Constant S., Roggen E. Potential of in vitro reconstituted 3D human airway epithelia (MucilAir) to assess respiratory sensitizers. Toxicol. In Vitro. 2013 Apr, 27 (3) pp. 1151-1156
·[Huh, 2010] Huh D., Matthews B.D., Mammoto A., Montoya-Zavala M., Hsin H.Y., Ingber D.E. Reconstituting Organ-Level Lung Functions on a Chip. Science. 2010, 328 pp. 1662-1668
·[Huh, 2012] Huh D., Leslie D.C., Matthews B.D., Fraser J.P., Jurek S., Hamilton G.A., Thorneloe K.S., McAlexander M.A., Ingber D.E. A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice. Sci Transl Med. 4:159ra147 doi:. 2012 doi:10.1126/scitranslmed.3004249
·[Hussain, 2005] Hussain S.M., Hess K.L., Gearhart J.M., Geiss K.T., Schlager J.J. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol. In Vitro. 2005, 19 pp. 975-983
·[ICH 2005] International Conference on Harmonization 2005, available at http://www.ich.org/fileadmin/
·Public_Web_Site/ICH_Products/Guidelines/Multidisciplinary/M3_R2/Step4/M3_R2__Guideline.pdf.
·[Insam, 1997] Insam H. A new set of substrates proposed for community characterization in environmental samples. In: Microbial Communities: Functional Versus Structural Approaches, (Insam H., & Rangger A. eds.). Springer-Verlag, Berlin, 1997
·[ISO 10872] ISO 10872, Water quality-Determination of the toxic effect of sediment and soil samples on growth, fertility and reproduction of Caenorhabditis elegans (Nematoda)
·[ISO 10993-18] ISO 10993-18, Biological evaluation of medical devices-Part 18: Chemical characterization of materials
·[ISO/TR 13014] ISO/TR 13014, Nanotechnologies-Guidance on physico-chemical characterization of engineered nanoscale materials for toxicologic assessment
·[ISO 14971] ISO 14971, Medical devices-Application of risk management to medical devices
·[ISO/TR 16196] ISO/TR 16196, Compilation and Description of Sample Preparation and Dosing Methods for Engineered and Manufactured NMs
·[Jackson, 2009] Jackson B. P., Pace H., Lanzirotti A., Smith R., Ranville J.F. Synchrotron X-ray 2D and 3D elemental imaging of CdSe/ZnS quantum dot nanoparticles in Daphnia magna. Anal. Bioanal. Chem. 2009, 394 pp. 911-917
·[Jírová, 2010] Jírová D., Basketter D., Liebsch M., Bendová H., Kejlová K., Marriott M. et al. Comparison of human skin irritation patch test data with in vitro skin irritation assays and animal data. Contact Dermat. 2010 Feb, 62 (2) pp. 109-116
·[Jones, 2009] Jones C.F., & Grainger D.W. In vitro assessments of nanomaterial toxicity. Adv. Drug Deliv. Rev. 2009, 61 pp. 438-456
·[Judy, 2011] Judy J.D., Unrine J.M., Bertsch P.M. Evidence for Biomagnification of Gold Nanoparticles within a Terrestrial Food Chain. Environ. Sci. Technol. 2011, 45 pp. 776-781
·[Karlsson, 2010] Karlsson H.L. The comet assay in nanotoxicology research. Anal. Bioanal. Chem. 2010, 398 pp. 651-666
·[Khodakovskaya, 2011] Khodakovskaya M.V., de Silva K., Nedosekin D.A., Dervishi E., Biris A.S., Shashkov E.V. et al. Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions. Proc. Natl. Acad. Sci. USA. 2011, 108 pp. 1028-1033
·[Kim, 2012] Kim H. J., Huh D., H amilton G., Ingber D.E. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip. 2012, 21 pp. 2165-2174
·[Kiss, 2008] Kiss B., Biro T., Czifra G., Toth B., K ertesz Z., Szikszai Z. et al. Investigation of micronized titanium dioxide penetration in human skin xenografts and its effect on cellular functions of human skin-derived cells. Exp. Dermatol. 2008, 17 pp. 659-667
·[Könczöl, 2011] Könczöl M., Ebeling S., Goldenberg E., Treude F., Gminski R., Gieré R. et al. Cytotoxicity and genotoxicity of size-fractionated iron oxide (magnetite) in A549 human lung epithelial cells: role of ROS, JNK, and NF-B. Chem. Res. Toxicol. 2011 Sep 19, 24 (9) pp. 1460-1475 Epub 2011 Jul 18. DOI: doi:10.1021/tx200051s
·[Kumar, 2013] Kumar A., & Dhawan A. Genotoxic and carcinogenic potential of engineered nanoparticles: an update. Arch. Toxicol. 2013, 87 pp. 1883-1900
·[Lacerda, 2010] Lacerda S.H., Park J.J., Meuse C., Pristinski D., Becker M.L., Karim A. et al. Interaction of gold nanoparticles with common human blood proteins. ACS Nano. 2010, 4 pp. 365-379
·[Lademann, 2008] Lademann J., Knorr F., Richter H., Blume-Peytavi U., Vogt A., Antoniou C. et al. Hair follicles-an efficient storage and penetration pathway for topically applied substances. Skin Pharmacol. Physiol. 2008, 21 pp. 150-155
·[Landsiedel, 2009] Landsiedel R., Kapp M.D., Schulz M., Wiench K., Oesch F. Genotoxicity investigations on nanomaterials: methods, preparation and characterization of test material, potential artifacts and limitations-many questions, some answers. Mutat. Res. 2009, 681 pp. 241-258
·[Landsiedel, 2010] Landsiedel R., Ma-Hock L., Van Ravenzwaay B., Schulz M., Wiench K., Champ S. et al. Gene toxicity studies on titanium dioxide and zinc oxide nanomaterials used for UV-protection in cosmetic formulations. Nanotoxicology. 2010, 4 pp. 364-381
·[Lee, 2012] Lee T.L., R aitano J.M., Rennert O.M., Chan S.W., Shan W.Y. Accessing the genomic effects of naked nanoceria in murine neuronal cells. Nanomedicine. 2012, 8 pp. 599-608
·[Lein, 2005] Lein P., Silbergeld E., L ocke P., G oldberg A.M. In vitro and other alternative approaches to developmental neurotoxicity testing (dnt). Environ. Toxicol. Pharmacol. 2005, 19 (3) pp. 735-744
·[Lewicka, 2013] Lewicka Z.A., Yu W.W., Oliva B.L., Contreras E.Q., Colvin V.L. Photochemical behavior of nanoscale TiO2 and ZnO sunscreen ingredients. J. Photochem. Photobiol. Chem. 2 013, 263 pp. 24-33
·[Li, 2008] Li N., Xia T., Nel A.E. The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles. Free Radic. Biol. Med. 2008, 44 pp. 1689-1699
·[Li, 2008 b] Li S.Q., Zhu R.R., Zhu H., Xue M., Sun X.Y., Yao S.D. et al. Nanotoxicity of TiO2 nanoparticles to erythrocyte in vitro. Food Chem. Toxicol. 2008, 46 pp. 3626-3631
·[Lin, 2009] Lin S.J., Reppert J., Hu Q., Hudson J.S., Reid M.L., Ratnikova T.A. et al. Uptake, Translocation, and Transmission of Carbon Nanomaterials in Rice Plants. Small. 2009, 5 pp. 1128-1132
·[Lin, 2010] Lin Y.S., & Haynes C.L. Impacts of mesoporous silica nanoparticle size, pore ordering, and pore integrity on hemolytic activity. J. Am. Chem. Soc. 2010, 132 pp. 4834-4842
·[Liu, 2011] Liu R., Rallo R., George S., Ji Z., Nair S., Nel A.E. et al. Classification NanoSAR development for cytotoxicity of metal oxide nanoparticles. Small. 2011, 7 pp. 1118-1126
·[Locascio, 2011] Locascio E. L., R eipa V., Zook J.M., Pleus R.C. Nanomaterial Toxicity: Emerging Standards and Efforts to Support Standards Development. In: Nanotechnology Standards, (Murashov V., & Howard J. eds.). Springer Science, 2011, pp. 179-208.
·[Lu, 2006] Lu W., Tan Y.Z., Jiang X.G. Establishment of coculture model of blood-brain barrier in vitro for nanoparticle's transcytosis and toxicity evaluation. Yao Xue Xue Bao. 2006, 41 pp. 296-304
·[Magdolenova, 2013] Magdolenova Z., Collins A., Kumar A., Dhawan A., Stone V ., Dusinska M. Mechanisms of genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology. 2013; Epub ahead of print
·[Mathew, 2006] Mathew L.K., Andreasen E.A., Tanguay R.L. Aryl hydrocarbon receptor activation inhibits regenerative growth. Mol. Pharmacol. 2006, 69 pp. 257-265
·[Mavon, 2007] Mavon A., Miquel C., Lejeune O., Payre B., Moretto P. In vitro percutaneous absorption and in vivo stratum corneum distribution of an organic and mineral sunscreen. Skin Pharmacol. Physiol. 2007, 20 pp. 10-20
·[McNeil, 2011] McNeil S.E. Challenges for nanoparticle characterization. Methods Mol. Biol. 2011, 697 pp. 9-15
·[Mitchell, 2009] Mitchell L.A., Lauer F.T., Burchiel S.W., McDonald J.D. Mechanism for how inhaled multiwalled carbon nanotubes suppress systemic immune function in mice. Nat. Nanotechnol. 2009, 4 pp. 451-456
·[Monteiro-Riviere, 2012] Monteiro-Riviere N.A., & Larese Filon F. Skin. In: Adverse effects of engineered nanomaterials. Exposure, toxicology and impact on human health. (Eds. Fadeel, F., Pietroiusti, A. Shvedova, A.A). Chapter 11. Academic Press. London-Waltham-San Diego, 2012.
·[Monteiro-Riviere, 2009] Monteiro-Riviere N.A., Inman A. O., Zhang L.W. Limitations and relative utility of screening assays to assess engineered nanoparticle toxicity in a human cell line. Toxicol. Appl. Pharmacol. 2009, 234 (2) pp. 222-235
·[Monteiro-Riviere y Riviere, 2009] Monteiro-Riviere N. A., & Riviere J.E. Interaction of nanomaterials with skin: aspects of absorption and biodistribution. Nanotoxicology. 2009, 3 pp. 288-293
·[Mudunkotuwa, 2010] Mudunkotuwa I.A., & Grassian V.H. Citric Acid Adsorption on TiO2 Nanoparticles in Aqueous Suspensions at Acidic and Circumneutral pH: Surface Coverage, Surface Speciation, and Its Impacton Nanoparticle-Nanoparticle Interactions. J. Am. Chem. Soc. 2010, 132 pp. 14986-14994
·[Myllynen, 2008] Myllynen P.K., Loughran M.J., Howard C.V., Sormunen R., Walsh A.A., Vähäkangas K.H. Kinetics of gold nanoparticles in the human placenta. Reprod. Toxicol. 2008, 26 pp. 130-137
·[Nagai, 2010] Nagai H., & Toyokuni S. Biopersistent fiber-induced inflammation and carcinogenesis: lessons learned from asbestos toward safety of fibrous nanomaterials. Arch. Biochem. Biophys. 2010, 502 pp. 1-7
·[Nel, 2006] Nel A., Xia T., Madler L., Li N. Toxic potential of materials at the nanolevel. Science. 2006, 311 pp. 622-627
·[Nel, 2012] Nel A., X ia T., M eng H., Wang X., L in S., Ji Z. et al. Nanomaterial Toxicity Testing in the 21st Century: Use of a Predictive Toxicological Approach and High-Throughput Screening. Acc. Chem. Res. 2012
·[NMX 13121] Norma Mexicana NMX-R-13121-SCFI Nanotecnologías-Evaluación del riesgo de nanomaterials, en proceso de publicación, idéntica a ISO/TR 13121, Nanotechnologies-Nanomaterial risk evaluation.
·[Oberdorster, 1992] Oberdorster G., Ferin J., Gelein R., Soderholm S .C., Finkelstein J. Role of the alveolar macrophage in lung injury-Studies with ultrafine particles. Environ. Health Perspect. 1992, 97 pp. 193-199
·[Oberdorster, 2001] Oberdorster G. P ulmonary effects of inhaled ultrafine particles. Int. Arch. Occup. Environ. Health. 2001, 74 pp. 1-8
·[Oberdörster, 2004] Oberdörster E. Manufactured nanomaterials (Fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ. Health Perspect. 2004, 112 pp. 1058-1062
·[OECD No. 24] No. 24 Preliminary Guidance Notes on Sample Preparation and Dosimetry for the Safety Testing of Manufactured NMs, available at http://search.oecd.org/officialdocuments/displaydocumentpdf/?cote=env/jm/mono%282010%2925&doclanguage=en
·[OECD 201] OECD 201, Freshwater Alga and Cyanobacteria, Growth Inhibition Test, 3 days
·[OECD 202] OECD 202, Daphnia sp, Acute Immobilisation Test, 2 days
·[OECD 209] OECD TG 209, Activated Sludge, Respiration Inhibition Test (Carbon and Ammonium Oxidation)
·[OECD 428] OECD TG 428, Skin Absorption: In vitro Method
·[OECD 429] OECD 429, Skin Sensitization: Local Lymph Node Assay
·[OECD 431] OECD 431, In Vitro Skin Corrosion: Reconstructed Human Epidermis (RhE) Test Method
·[OECD 435] OECD 435, In Vitro Membrane Barrier Test Method for Skin Corrosion
·[OECD 430] OECD 430, In Vitro Skin Corrosion: Transcutaneous Electrical Resistance Test Method (TER)
·[OECD 439] OECD TG 439, In Vitro Skin Irritation: Reconstructed Human Epidermis Test Method
·[OECD 471] OECD TG 471, Bacterial reverse mutation test
·[OECD 473] OECD TG 473, In Vitro Mammalian Chromosome Aberration Test
·[OECD 476] OECD TG 476, In Vitro Mammalian Cell Gene Mutation Test
·[OECD 487] OECD TG 487, In Vitro Mammalian Cell Micronucleus Test
·[Oostingh, 2011] Oostingh G.J., Casals E., Italiani P., Colognato R., Stritzinger R., Ponti J. et al. Problems and challenges in the development and validation of human cell-based assays to determine nanoparticle-induced immunomodulatory effects. Part. Fibre Toxicol. 2011, 8 p. 8
·[Park, 2008] Park E.J., Cho J., Park Y.K., Park K. Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS-2B cells. Toxicology. 2008, 245 pp. 90-100
·[Park, 2011] Park M.V.D.Z., Neigh A.M., Vermeuelen J.P., De La Fonteyne L.J.J., Verharen H.W., Briede J.J. et al. The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials. 2011, 32 pp. 9810-9817
·[Peters, 2008] Peters A.K., Wouwer G.V., Weyn B., Verheyen G.R., Vanparys P., Gompel J.V. Automated analysis of contractility in the embryonic stem cell test, a novel approach to assess embryotoxicity. Toxicol. In Vitro. 2008, 22 pp. 1948-1956
·[Petersen, 2008] Petersen E.J., Huang Q.G., Weber W.J. Bioaccumulation of radio-labeled carbon nanotubes by Eisenia foetida. Environ. Sci. Technol. 2008, 42 pp. 3090-3095
·[Petersen, 2008 b] Petersen E.J., Huang Q.G., Weber W.J. Ecological uptake and depuration of carbon nanotubes by Lumbriculus variegatus. Environ. Health Perspect. 2008, 116 pp. 496-500
·[Petersen, 2011] Petersen E.J., Zhang L.W., Mattison N.T., O'Carroll D.M., Whelton A.J., Uddin N. et al. Potential Release Pathways, Environmental Fate, And Ecological Risks of Carbon Nanotubes. Environ. Sci. Technol. 2011, 45 pp. 9837-9856
·[Petersen, 2012] Petersen E. J., & Henry T.B. Methodological considerations for testing the ecotoxicity of carbon nanotubes and fullerenes [Review]. Environ. Toxicol. Chem. 2012, 31 pp. 60-72
·[Petri-Fink, 2012] Petri-Fink A., & Rothen-Rutishauser B. Nanoparticles and cells: an interdisciplinary approach. Chimia (Aarau). 2012, 66 pp. 104-109
·[Poland, 2008] Poland C.A., & Duffin R. Kinloch, Maynard, A., Wallace, W.A.H., Seaton, A., Stone, V., Brown, S., MacNee, W., Donaldson, K. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat. Nanotechnol. 2008, 3 pp. 423-428
·[Powers, 2007] Powers K.W., Palazuelos M., Moudgil B.M., Roberts S.M. Characterization of the size, shape, and state of dispersion of nanoparticles for toxicological studies. Nanotoxicology. 2007, 1 pp. 42-51
·[Puzyn, 2009] Puzyn T., L eszczynska D., Leszczynski J. Quantitative Structure-Activity Relationships (QSARs) in the European REACH System: Could These Approaches be Applied to Nanomaterials? In: Practical Aspects of Computational Chemistry, (Leszczynski J., & Shukla N.K. eds.). Springer Science, 2009a, pp. 201-16.
·[Puzyn, 2011] Puzyn T., Rasulev B., Gajewicz A., Hu X., Dasari T.P., Michalkova A. et al. Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles. Nat. Nanotechnol. 2011, 6 pp. 175-178
·[Ren, 2011] Ren D. & Daines D.A. Use of the EpiAirway model for characterizing long-term host-pathogen interactions. J. Vis. Exp. 2011 Sep 2, (55) p. e3261
·[Roebben, 2013] Roebben G., Rassmussen K., Kestens V., Linsinger T.P.J., Rauscher H., Emons H. et al. Reference materials and representative test materials: the nanotechnology case. J. Nanopart. Res. 2013, 15 p. 1455
·[Rogers, 2008] Rogers E.J., Hsieh S.F., Organti N., Schmidt D., Bello D. A high throughout in vitro analytical approach to screen for oxidative stress potential exerted by nanomaterials using a biologically relevant matrix: human blood serum. Toxicol. In Vitro. 2008, 22 pp. 1639-1647
·[Roh, 2012] Roh J., Umh H.N., Sung H.K., Lee B.C., Kim Y. Repression of photomediated morphological changes of silver nanoplates. Colloids Surf. A Physicochem. Eng. Asp. 2012, 415 pp. 449-453
·[Rothen-Rutishauser, 2008] Rothen-Rutishauser B., Mueller L., Blank F., Brandenberger C., Muehlfeld C., Gehr P. A newly developed in vitro model of the human epithelial airway barrier to study the toxic potential of nanoparticles. ALTEX. 2008, 25 pp. 191-196
·[Roten-Rutishauser, 2010] Roten-Rutishauser B., B rown D.M., Piallier-Boyles M., Kinloch I. A., Windle A.H., Gehr P. et al. Relating the physicochemical characteristics and dispersion of multiwalled carbon nanotubes in different suspension media to their oxidative reactivity in vitro and inflammation in vivo. Nanotoxicology. 2010, 4 pp. 331-342
·[Rushton, 2010] Rushton E.K., Jiang J., L eonard S.S., Eberly S., Castranova V., Biswas P. et al. Concept of assessing nanoparticle hazards considering nanoparticle dosemetric and chemical/biological response metrics. J. Toxicol. Environ. Health A. 2010, 73 pp. 445-461
·[Russell] Russell W.M. S., & Burch R.L. The Principles of Humane Experimental Technique. Methuen, London, 1959
·[Ryan, 2007] Ryan J.J., Bateman H.R., Stover A., Gomez G., Norton S.K., Zhao W. et al. Fullerene nanomaterials inhibit the allergic response. J. Immunol. 2007, 179 pp. 665-672
·[Sadrieh, 2010] Sadrieh N., Wokovich A.M., Gopee N.V., Zheng J., Haines D., Parmiter D. et al. Lack of Significant Dermal Penetration of Titanium Dioxide from Sunscreen Formulations Containing Nano- and Submicron-Size TiO2 Particles. Toxicol. Sci. 2010, 115 pp. 156-166
·[Saili, 2010] Saili K.S., Simonich M.T., Tanguay R.L. Developmental Neurobehavioral Toxicity of Bisphenol A: Defining the Role of Estrogen Related Receptor Gamma. Toxicologist. 2010, 114 p. 1392
·[Sayes, 2007] Sayes C.M., Reed K.L., Warheit D.B. Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicol. Sci. 2007, 97 pp. 163-180
·[Sayes, 2010] Sayes C. & Ivanov I. Comparative study of predictive computational models for nanoparticleinduced cytotoxicity. Risk Anal. 2010, 30 pp. 1723-1734
·[Schöler, 2000] Schöler N., Zimmerman E., Katzfey U., Hahn H., Muller R.H., Leisenfeld O. Effect of solid lipid nanoparticles (SLN) on cytokine production and viability of murine peritoneal macrophages. J. Microencapsul. 2000, 17 pp. 639-650
·[Silva, 2005] Silva V.M., Corson N., Elder A., Oberdorster G. The rat ear vein model for investigating in vivo thrombogenicity of ultrafine particles (UFP). Toxicol. Sci. 2005, 85 pp. 983-989
·[Sin, 2004] Sin A., Chin K.C., Jamil M.F., Kosto Y., Rao G., Shuler M.L. The design and fabrication of threechamber microscale cellculture analog devices with integrated dissolved oxygen sensors. Biotechnol. Prog. 2004, 20 pp. 338-345
·[Tal, 2008] Tal T.L., Franzosa J.A., Menelaou E., Svoboda K., Tanguay R.L. The Developmental Neurotoxicity of MicroRNAs. Toxicologist. 2010, 114 p. 172
·[Taurozzi, 2010] Taurozzi J. S., Hackley V.A., W iesner M.R. Ultrasonic dispersion of nanoparticles for environmental, health and safety assessment-issues and recommendations. Nanotoxicol. 2010, 5 pp. 711-729
·[Toropov, 2010] Toropov A.A., Toropova A.P., Benfenati E. SMILES-based optimal descriptors: QSAR modeling of carcinogenicity by balance of correlations with ideal slopes. Eur. J. Med. Chem. 2010, 45 pp. 3581-3587
·[Tox21] Computational Toxicology Research. Tox21, Chemical Testing in the 21st Century, available at http://epa.gov/ncct/Tox21/
·[Tsuda, 2009] Tsuda H., Xu J., Sakai Y., Futakuchi M., Fukamachi K. Toxicology of engineered nanomaterials-a review of carcinogenic potential. Asian Pac. J. Cancer Prev. 2009, 10 pp. 975-980
·[Unrine, 2010] Unrine J.M., Hunyadi S.E., Tsyusko O.V., Rao W., Shoults-Wilson W.A., Bertsch P.M. Evidence for Bioavailability of Au Nanoparticles from Soil and Biodistribution within Earthworms (Eisenia fetida). Environ. Sci. Technol. 2010, 44 pp. 8308-8313
·[USNRC, 2007] United States National Research Council (2007), Toxicity Testing in the 21st Century: A vision and a strategy'
·[Vallyathan, 1983] Vallyathan V., Mentnech M.S., Stettler L.E., Dollberg D.D., Green F.H.Y. Mount St. Helens' volcanic ash: hemolytic activity. Environ. Res. 1983, 30 pp. 349-360
·[Van Maanen, 1999] Van Maanen J.M., Borm P.J., Knaapen A., van Herwijnen M., Schilderman P.A., Smith K.R. et al. In vitro effects of coal fly ashes: hydroxyl radical generation, iron release, and DNA damage and toxicity in rat lung epithelial cells. Inhal. Toxicol. 1999, 11 pp. 1123-1141
·[Walker, 2007] Walker G.M., Monteiro-Riviere N., Rouse J., O'Neill A.T. A linear dilution microfluidic device for cytotoxicity assays. Lab Chip. 2007, 7 pp. 226-232
·[Warheit, 2007] Warheit D.B., Webb T.R., Colvin V.L., Reed K.L., Sayes C.M. Pulmonary bioassay studies with nanoscale and fine-quartz particles in rats: toxicity is not dependent upon particle size but on surface characteristics. Toxicol. Sci. 2007, 95 pp. 270-280
·[Warheit, 2010] Warheit D. B. & Donner E.M. Rationale of genotoxicity testing of nanomaterials: regulatory requirements and appropriateness of available OECD test guidelines. Nanotoxicology. 2 010, 4 pp. 409-413
·[Warheit, 2013] Warheit D.B., Reed K.L., DeLorme M.P. Embracing a Weight-of Evidence Approach for Establishing NOAELs for Nanoparticle Inhalation Toxicity Studies. Toxicol. Pathol. 2013, 41 pp. 387-394
·[Werlin, 2011] Werlin R., Priester J.H., Mielke R.E., Kramer S., Jackson S., Stoimenov P.K. et al. Biomagnification of cadmium selenide quantum dots in a simple experimental microbial food chain. Nat. Nanotechnol. 2011, 6 pp. 65-71
·[Winkler, 2012] Winkler D.A., Mombelli E., Pietroiusti A., Tran L., Worth A., Fadeel B. et al. Applying quantitative structure-activity relationship approaches to nanotoxicology: Current status and future potential. Toxicology. 2012, 12 pp. 397-406
·[Wissing, 2002] Wissing, S., & Mueller R. Solid lipid nanoparticles as carrier for sunscreens: in vitro release and in vivo skin penetration. J. Control. Release. 2002, 81 pp. 225-233
·[Xia, 2006] Xia T., Kovochich M., Brant J., Hotze M., Sempf J., Oberley T. et al. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett. 2006, 6 pp. 1794-1807
·[Yang, 2009] Yang H., Liu C., Yang D., Zhang H., Xi Z. Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J. Appl. Toxicol. 2009, 29 pp. 69-78
·[Zhu, 2010] Zhu X.S., Wang J.X., Zhang X.Z., Chang Y., Chen Y.S. Trophic transfer of TiO2 nanoparticles from daphnia to zebrafish in a simplified freshwater food chain. Chemosphere. 2010, 79 pp. 928-933
 
Atentamente,
Ciudad de México, a 19 de febrero de 2020.- El Secretario Técnico de la Comisión Nacional de Normalización, Alfonso Guati Rojo Sánchez.- Rúbrica.
 

En el documento que usted está visualizando puede haber texto, caracteres u objetos que no se muestren debido a la conversión a formato HTML, por lo que le recomendamos tomar siempre como referencia la imagen digitalizada del DOF o el archivo PDF de la edición.
 


CONSULTA POR FECHA
Do Lu Ma Mi Ju Vi
crear usuario Crear Usuario
busqueda avanzada Búsqueda Avanzada
novedades Novedades
top notas Top Notas
quejas y sugerencias Quejas y Sugerencias
copia Obtener Copia del DOF
versif. copia Verificar Copia del DOF
enlaces relevantes Enlaces Relevantes
Contacto Contáctenos
filtros rss Filtros RSS
historia Historia del Diario Oficial
estadisticas Estadísticas
estadisticas Vacantes en Gobierno
estadisticas Ex-trabajadores Migratorios
INDICADORES
Tipo de Cambio y Tasas al 21/09/2021

DOLAR
20.1735

UDIS
6.909308

TIIE 28 DIAS
4.7440%

TIIE 91 DIAS
4.7955%

TIIE DE FONDEO
4.53%

Ver más
ENCUESTAS

¿Le gustó la nueva imagen de la página web del Diario Oficial de la Federación?

 

0.110712001508857610.jpg 0.192286001221699769.jpg 0.821786001312920061.gif 0.475545001508857915.jpg
Diario Oficial de la Federación

Río Amazonas No. 62, Col. Cuauhtémoc, C.P 06500, Ciudad de México
Tel. (55) 5093-3200, donde podrá acceder a nuestro menú de servicios
Dirección electrónica: www.dof.gob.mx

113

AVISO LEGAL | ALGUNOS DERECHOS RESERVADOS © 2021